Did you know archive

Lightning protection tents exist!

The probability of getting struck by lightning is statistically very rare, but alas, storm-attributed deaths and injuries stretch into the low thousands on an annual basis. About 96% of those struck were in open environments when hit. A majority — as you may expect — come from frequent participators in outdoor activities such as hiking, camping, and climbing. Industrial designer kama jania’s ‘bolt’ line of tents was created to increase the safety of those unfortunate to be in the wrong place when the weather turns.
Source

Almost half of drivers speed to avoid hail storms!

According to research from RACQ nearly half of Queensland, Australia drivers will speed to avoid hail damage to their cars. The motoring club and insurer's research revealed 47% of motorists admitted to speeding to avoid hail damage to their cars - up from 44% last year. The research also found female drivers were more likely to speed (54.2%) than males (52%) when a storm hits.
Source

On July 13, 1977, New York City endured a 25-hour blackout after lightning strikes power lines.

On July 13, 1977, New York City endured a 25-hour blackout after lightning strikes power lines, prompting widespread arson, looting, and riots. The blackout was to many a metaphor for the gloom that had already settled on the city. An economic decline, coupled with rising crime rates and the panic-provoking (and paranoia-inducing) Son of Sam murders, had combined to make the late 1970s New York’s Dark Ages.
Source

An "of the blue" bolt evidence!

An 11-year-old western Pennsylvania girl is recovering after she was struck by a bolt from the blue. According to Lisa Wehrle the sun was shining when her daughter, Britney, was struck by lightning Friday, apparently from a storm several miles away.
Source

There are 5 ways to be struck by lightning!

1. Direct strike 2. Side flash 3. Ground current 4. Conduction 5.Streamers
Source

On the 21st of August 2011, a thunderstorm forced the Pope to cut short his speech!

On the 21st of August 2011, a thunderstorm forced the pope to cut short his speech to an estimated 1 million young pilgrims gathered at a Madrid airfield to mark World Youth Day. As rain soaked the crowd and lightning lit up the night sky on Saturday, the 84-year-old pontiff skipped the bulk of the speech and delivered brief greetings in half a dozen languages.
Source

Planes get hit by lightning frequently!

Airplanes get hit by lightning mid-flight! Contrary to what you might believe, it’s a common occurrence on airplanes.
Source

...what a moonbow is?

Moonbows, also known as lunar rainbows, are the dimmer cousin of more common daylight rainbows, made possible from the refraction of raindrops by moonlight, rather than sunlight. Moonbows are so rare because moonlight is not usually bright, and the alignment of conditions needed for them don't happen often. According to Atmospheric Optics, a bright near-full moon must be less than 42 degrees above the horizon, illuminating rain on the opposite side of a dark sky.
Source

On April 3, 1856 a lightning strike obliterated 4000 people in Rhodes, Greece.

On April 3, 1856 a lightning strike obliterated 4000 people. The lightning stroke the Palace of the Grand Masters, Rhodes, Greece, which was used as an ammo storage, resulting in a massive explosion that killed 4,000 people in and around the Palace, reducing it to a pile of rubble that sat on Rhodes for almost a century.
Source

Lightning can strike at sea!

In a rare incident of its kind, a coastguard diver and a citizen were killed after they were struck by a lightning bolt off Khairan beach of Kuwait on the 8th of May 2016. The Interior Ministry said in a statement that a jet ski of citizen Saad Khaled Al-Shereeda broke down and a coastguard boat was dispatched to rescue him. The ministry added that the coastguard diver, Abdullah Othman Al-Doussary, jumped in the water to help the man, but they were both struck by lightning and were killed instantly. In October last year, an Asian was killed by lightning in northern Kuwait during a freak storm. It is estimated that 6,000 to as many as 24,000 people are killed around the world by lightning strikes every year.
Source

A teenage girl survived a terrifying lightning strike, saved by her iPod wire!

A teenage girl survived a terrifying lightning strike after she was saved by the wire of her iPod. Schoolgirl Sophie Frost and her boyfriend Mason Billington, both 14, stopped to shelter under a tree when a storm struck as they were walking near their homes. They were struck by a lightning but survived! Doctors believe Sophie survived the 300,000-volt surge only because it travelled through the gadget’s wire, diverting it away from her vital organs.
Source

Volcano eruptions can produce lightning!

Mount Etna spectacularly exploded on the 3rd of December 2015 for the first time in two years, sending a plume of volcanic ash scorching through the sky. The cloud was lit up with the astonishing sight of a "dirty thunderstorm", which causes lightning to streak through a cloud of ash. This natural wonder occurs when tiny fragments of rock, ash and ice rub together to produce static electricity.
Source

A man was blown out of boots after being hit by a lightning bolt!

A man in Atlanta, USA was lucky to be alive after he was struck by lightning, blowing him right out of his work boots. Sean O’Connor was doing yard work Saturday when he was struck by a bolt of lightning and knocked unconscious. According to the 30-year-old, the sun was shining and there appeared to be no threat of storms when he began working in his yard.
Source

Lightning Makes For A Terrible Renewable Energy Source

Lightning is an impressive, energetic force of nature — so why aren't we using all that raw power to run our homes? Two reasons: For one thing, lightning is unpredictable and really, really fast. The second part of the answer: It's hot and loud and bright, but lightning doesn't carry as much energy as you might think.
Source

...that Lightning produces afterglow of gamma radiation?

Lightning can produce X-rays and gamma radiation. In the past, researchers thought that this phenomenon only lasted for a very short time, about a ten thousandth part of a second. However, the ionizing radiation of lightning appears to shine much longer than presumed: an afterglow of gamma radiation arises, which lasts up to 10,000 times longer. This is demonstrated for the first time by computer simulations of researchers from Centrum Wiskunde & Informatica (CWI) in Amsterdam. Their article 'TGF afterglows: a new radiation mechanism from thunderstorms' was published on 22 October 2017 in the scientific journal Geophysical Review Letters. This discovery can provide more insight into how lightning develops. Terrestrial gamma flashes ‘Terrestrial gamma flashes’ were discovered about two decades ago. When lightning starts, electrons can be accelerated to very high energies, which cause an explosion of gamma radiation when these electrons crash into air molecules: the so-called terrestrial gamma flashes'. Bursts of up to a trillion (‘a billion billion’) gamma particles are measured on the ground, in airplanes and by satellites. However, these measurements are difficult, since these bursts are very focused and only last for a short time, around 0,0001 seconds. There is still much unknown about how these terrestrial gamma flashes arise and what their role is in the development of lightning. The now discovered afterglow helps to study this phenomenon. Afterglow in all directions CWI researcher Casper Rutjes explains what happens in the newly discovered radiation mechanism. “The radiation of a terrestrial gamma flash is so strong that nuclear reactions can take place. When the gamma rays hit the atomic nuclei of the air molecules, the protons and neutrons, of which atomic nuclei exist, can be detached. The loose neutrons can wander longer and farther than protons because they don’t have electrical charge. After a while, the neutron is captured by another atomic nucleus, which can again produce gamma radiation. The high energy of the gamma ray flash, which is used in releasing neutrons, is, so to speak, temporarily stored in the released neutrons.” The CWI researchers calculated that in this way an afterglow of new gamma radiation occurs, which lasts for 1,000 to 10,000 times longer than the gamma ray flash itself and which is not focused but radiates into all directions, which facilitates measurements. Afterglow measured The CWI researchers found in the scientific literature hardly any measurements that corresponded to the predictions, because almost no one was done on the right time scale. Researcher Casper Rutjes says: “Recently, our simulations have also been confirmed by experiments. Almost simultaneously, G.S. Bowers et al. of the University of California Santa Cruz, have measured a clear afterglow of gamma ray flashes in Japan, after a lightning bolt struck a wind turbine. That article, ‘Gamma-ray signatures of neutrons from a terrestrial gamma-ray flash’, also appeared now in the scientific journal Geophysical Review Letters. Radiation risk About the radiation risk Rutjes says: “The chance of being hit directly by a terrestrial gamma ray flash is very small. If someone in a plane is hit directly by such a narrow terrestrial gamma ray flash, this person will receive a radiation dose approximately equal to 400 times an X-ray picture (30 mSv)[1]. The afterglow that we discovered radiates into all directions, increasing the chance that a plane flying above a thunderstorm is hit, but fortunately, that radiation is much weaker. The radiation dose of the afterglow after lightning is not dangerous: less than passengers already receive through background radiation when they fly for an hour.” The research was conducted by Casper Rutjes, Gabriel Diniz, Ivan Ferreira and Ute Ebert from Centrum Wiskunde & Informatica (CWI) in Amsterdam, and it was funded by the Netherlands Organisation for Scientific Research (NWO).
Source

The plane carrying the Spanish national football team home from the World Cup in Brazil was struck by lightning on the 22nd of June 2014!

The plane carrying the Spanish national football team home from the World Cup in Brazil was struck by lightning on the 22nd of June 2014 as it approached its landing in Madrid, adding to the streak of bad luck the team seemed to be on after its World Cup defeat.
Source

All 11 members of a football team were killed by a lightning bolt during a match.

All 11 members of a football team were killed by a bolt of lightning at during a match in the Democratic Republic of Congo. According to a Congolese newspaper that reported the incident, the other team was left unharmed!
Source

How Hot Is Lightning?

Lightning is one of the most destructive forces in nature. But for all the folklore and legends amassed over human history on lightning, we know surprisingly little about the inner workings of this powerful phenomenon, including something as simple as how the current that flows through a thunder-inducing flash is related to the temperature of the strike. "The basic physics of lightning, such as lightning initiation and lightning propagation, is not fully understood at this point," said Robert Moore, a lightning researcher from University of Florida in Gainesville. "We know the basics, but not the details. So when anybody makes headway, it is major news." Lightning causes more than $5 billion in damages every year in the U.S., as well as more fatalities than hurricanes. "A direct hit from a lightning strike can melt a power cable or start a forest fire, where the amount of heat from the lightning plays a major role," said Xiangchao Li, a scientist from China who specializes in lightning research. Li and his team discovered a mathematical relationship between the current intensity and the temperature inside lightning. Their result was published last month in the journal Scientific Reports. Although there are approximately 100,000 lightning strikes on Earth every single day, the randomness of the occurrences makes it difficult for scientists to study them in an effective or systematic way. So until Thor, the Norse god of lightning as well as other meteorological events, joins a lightning research team, scientists are left to their own devices. Luckily such a device does exist. Known as an impulse current generator system, the device can create artificial lightning with currents up to tens of thousands of amperes. For perspective, a household or automotive fuse is usually rated well below a hundred amperes, and an electric current of just a few amperes can easily kill you. A natural lightning strike typically carries around 20-30,000 amperes of current. Certainly there are other factors such as size and setting of natural lightning that cannot be replicated in a laboratory, but just in terms of sheer current output, the lightning generated by the device can really give Thor a run for his money. By using their artificial lightning system, Li and his team were able to dial up lightning strikes at will, with currents between 5,000 to 50,000 amperes. This resulted in artificial lightning strikes with temperatures as high as 17,000 F, twice as hot as the surface of the Sun. This creates a new problem -- at such high temperatures, a normal thermometer would explode. And even if it didn't, it wouldn't react quickly enough to register the temperature of the lightning strike. Fortunately, there is "light" in "lightning." Li and his team were able to record the lightning's temperature within a millisecond by measuring the intensity of the light at various wavelengths. After striking lightning at the same place over and over again, they concluded that the relationship between the current and temperature of lightning is a highly logarithmic one, meaning that the temperature difference between lightning strikes with 1,000 and 10,000 amperes is similar to those with 10,000 and 100,000 amperes. This result provides solid evidence for previous theoretical predictions that lacked the support of data. "The next step would be to compare with measurements from rocket triggered lightning, or natural lightning, which can be done throughout the U.S. or China," Moore suggested. That's right, rocket-triggered lightning. Essentially a glorified version of Benjamin Franklin's wired kite, scientists today have ways to siphon natural lightning from the sky by launching an electrically grounded rocket, as shown in the video below. With a better understanding of the physics of lightning, scientists can help engineers to improve current protocols and infrastructures to better deal with lightning -- from weather warning systems to the design of power grids. Perhaps we can one day limit the power of Thor to only smiting Loki on the silver screen.
Source

Lightning knocked out Internet on Cayman’s Island!

A lightning strike along one of the submarine cables that connects Cayman’s Internet to the rest of the world knocked out Internet service for many on Grand Cayman Tuesday evening. The lightning hit a landing station at the U.S. end of the Maya-1 cable system between Cancun, Mexico and Hollywood, Florida, on Tuesday afternoon, affecting Internet access and some phone service in Cayman, according to local telecom companies and regulators.
Source

…about the Rochester ice storm?

The 1991 Ice Storm was one of the most damaging storms in Rochester history. It all began 25 years ago on Thursday. We took a look back with a woman who experienced it herself. For residents in our area that were around, the ice storm that began 25 years ago was an event unlike most had ever seen before and the memories of that storm are still as vivid and fresh as they were in 1991.
Source