…about the Rochester ice storm?
The 1991 Ice Storm was one of the most damaging storms in Rochester history. It all began 25 years ago on Thursday. We took a look back with a woman who experienced it herself. For residents in our area that were around, the ice storm that began 25 years ago was an event unlike most had ever seen before and the memories of that storm are still as vivid and fresh as they were in 1991.
Source
Upside-down lightning strikes exist and pose a great threat to wind turbines!
Upward lightning strikes initiate on the ground and head skyward. These discharges, which usually begin at the top of tall and slender structures, pose a real risk for wind turbines. An EPFL study analyzes the mechanisms underlying this poorly understood phenomenon.
Source
A 36-year-old diver was killed after lightning struck his oxygen tank!
A 36-year-old diver was killed off a Florida beach after lightning struck his oxygen tank, authorities have said. The man was diving with three others off a boat near Deerfield Beach on Sunday. When he surfaced, ‘lighting struck his tank,’ said Deerfield Beach fire Chief Gary Fernaays. ‘He was approximately 30 feet from the boat at the time.’
Source
..that ship-emitted particles and increase lightning?
MODERN, broad-beamed merchant vessels are well able to withstand the rough and tumble of the waves, but sailors still prefer to avoid storms at sea if they can. Containers may come loose in heavy weather and there is always a chance of lightning knocking out communications. It is therefore ironic that some storms may be caused by ships themselves. That, at least, is the conclusion reached by Joel Thornton of the University of Washington, in Seattle, and his colleagues in a paper just published in Geophysical Research Letters. They demonstrate that lightning strikes the Indian Ocean and the South China Sea almost twice as often along shipping lanes as it does other areas of these waters.
Dr Thornton and his team considered 1.5bn strikes recorded in this part of the world by the World Wide Lightning Location Network (an international collaboration led by Dr Thornton’s colleague, Robert Holzworth) between 2005 and 2016. As the map shows, those strikes that happened over the ocean were concentrated in places most plied by ships. In particular, the shipping lane that passes from the south of Sri Lanka to the northern entrance of the Straits of Malacca, and thence down the straits to Singapore, positively glows with lightning. (Its westward extension to the Suez canal was outside the study area.) So do the lanes from Singapore and the western part of Malaysia that head north-east across the South China Sea.
Neither changes in vertical wind shear nor differences in horizontal air movements seem likely to be causing this concentration of thunderstorms, for other measurements suggest that these weather-modifying phenomena are the same inside shipping lanes as they are in neighbouring parts of the atmosphere immediately outside those lanes. Nor does it seem plausible that the ships themselves (admittedly made of metal, and also the tallest structures on what is otherwise a flat surface) are responsible for attracting all the extra strikes involved. Though the area of the lanes is small compared with the whole ocean, it is vast compared with the area actually occupied by vessels. Most of the extra bolts are hitting the sea rather than craft sailing across it.
The most likely explanation is particulate pollution emitted by the ships using the shipping lanes. Marine diesel burned offshore is generally high in sulphur, and its combustion produces soluble oxides of that element which act as nuclei for the condensation of cloud-forming droplets. Typical marine clouds in unpolluted areas are composed of large droplets and do not rise to high altitude, but Dr Thornton and his team reckon that smaller droplets, of the sort that condense around oxides of sulphur, might more easily be carried upward by convection—forming, as they rose, into towering storm clouds that would act as nurseries of lightning bolts.
As to what can be done about this extra lightning, change may already be in hand. At the moment, standard “bunker” fuel has an average sulphur content of 2.7%. From 2020 that should fall to 0.5% if refiners and shipowners obey rules being introduced by the International Maritime Organisation, the body responsible for trying to impose order on the world’s shipping.
Ships are also being sailed more efficiently, often by slowing them down, which reduces the amount of fuel consumed per nautical mile. That is how Maersk Line—one of the world’s biggest container-ship operators—has cut its fleet’s fuel consumption by 42% since 2007.
On top of this, ship propulsion is becoming more efficient, as heat-recycling systems and new types of engine are introduced. In a few decades, therefore, the storminess of shipping lanes may have returned to normal. In the meantime, for any who may doubt humanity’s ability to affect the weather, Dr Thornton’s work provides strong evidence that it can.
This article appeared in the Science and technology section of the print edition under the headline "Brimstone and fire"
Source
Planes get hit by lightning frequently!
Airplanes get hit by lightning mid-flight! Contrary to what you might believe, it’s a common occurrence on airplanes.
Source
Almost half of drivers speed to avoid hail storms!
According to research from RACQ nearly half of Queensland, Australia drivers will speed to avoid hail damage to their cars. The motoring club and insurer's research revealed 47% of motorists admitted to speeding to avoid hail damage to their cars - up from 44% last year. The research also found female drivers were more likely to speed (54.2%) than males (52%) when a storm hits.
Source
Which are the places more likely to be struck by lightning?
The place most likely to be struck by lightning in the world is one spot above Lake Maracaibo in Venezuela, according to new data. Over this mountain lake, there was a lightning show an astounding 297 days out of 365 days a year, on average. Even more surprising, the lightning strikes didn't occur just over the massive lake, but at one particular spot -- the point where the lake empties into the Catatumbo River, researchers said Dec. 14 at the annual meeting of the American Geophysical Union.
Source
How Hot Is Lightning?
Lightning is one of the most destructive forces in nature. But for all the folklore and legends amassed over human history on lightning, we know surprisingly little about the inner workings of this powerful phenomenon, including something as simple as how the current that flows through a thunder-inducing flash is related to the temperature of the strike.
"The basic physics of lightning, such as lightning initiation and lightning propagation, is not fully understood at this point," said Robert Moore, a lightning researcher from University of Florida in Gainesville.
"We know the basics, but not the details. So when anybody makes headway, it is major news."
Lightning causes more than $5 billion in damages every year in the U.S., as well as more fatalities than hurricanes.
"A direct hit from a lightning strike can melt a power cable or start a forest fire, where the amount of heat from the lightning plays a major role," said Xiangchao Li, a scientist from China who specializes in lightning research. Li and his team discovered a mathematical relationship between the current intensity and the temperature inside lightning. Their result was published last month in the journal Scientific Reports.
Although there are approximately 100,000 lightning strikes on Earth every single day, the randomness of the occurrences makes it difficult for scientists to study them in an effective or systematic way. So until Thor, the Norse god of lightning as well as other meteorological events, joins a lightning research team, scientists are left to their own devices.
Luckily such a device does exist. Known as an impulse current generator system, the device can create artificial lightning with currents up to tens of thousands of amperes. For perspective, a household or automotive fuse is usually rated well below a hundred amperes, and an electric current of just a few amperes can easily kill you. A natural lightning strike typically carries around 20-30,000 amperes of current. Certainly there are other factors such as size and setting of natural lightning that cannot be replicated in a laboratory, but just in terms of sheer current output, the lightning generated by the device can really give Thor a run for his money.
By using their artificial lightning system, Li and his team were able to dial up lightning strikes at will, with currents between 5,000 to 50,000 amperes. This resulted in artificial lightning strikes with temperatures as high as 17,000 F, twice as hot as the surface of the Sun.
This creates a new problem -- at such high temperatures, a normal thermometer would explode. And even if it didn't, it wouldn't react quickly enough to register the temperature of the lightning strike. Fortunately, there is "light" in "lightning." Li and his team were able to record the lightning's temperature within a millisecond by measuring the intensity of the light at various wavelengths.
After striking lightning at the same place over and over again, they concluded that the relationship between the current and temperature of lightning is a highly logarithmic one, meaning that the temperature difference between lightning strikes with 1,000 and 10,000 amperes is similar to those with 10,000 and 100,000 amperes. This result provides solid evidence for previous theoretical predictions that lacked the support of data.
"The next step would be to compare with measurements from rocket triggered lightning, or natural lightning, which can be done throughout the U.S. or China," Moore suggested.
That's right, rocket-triggered lightning. Essentially a glorified version of Benjamin Franklin's wired kite, scientists today have ways to siphon natural lightning from the sky by launching an electrically grounded rocket, as shown in the video below.
With a better understanding of the physics of lightning, scientists can help engineers to improve current protocols and infrastructures to better deal with lightning -- from weather warning systems to the design of power grids. Perhaps we can one day limit the power of Thor to only smiting Loki on the silver screen.
Source
On July 13, 1977, New York City endured a 25-hour blackout after lightning strikes power lines.
On July 13, 1977, New York City endured a 25-hour blackout after lightning strikes power lines, prompting widespread arson, looting, and riots. The blackout was to many a metaphor for the gloom that had already settled on the city. An economic decline, coupled with rising crime rates and the panic-provoking (and paranoia-inducing) Son of Sam murders, had combined to make the late 1970s New York’s Dark Ages.
Source
Animals get struck by lightning, too.
Lightning strikes about 100 times every second of the day, mainly in warmer regions of the world. About 240,000 people are injured by lightning every year, and 24,000 die after being struck. But humans aren’t the only victims of lightning — animals are, too, though reports of such deaths are far rarer than the deaths themselves.
Source
There are 5 ways to be struck by lightning!
1. Direct strike
2. Side flash
3. Ground current
4. Conduction
5.Streamers
Source
More than 400 people were killed in southern Egypt when lightning struck a depot's fuel tanks.
More than 400 people were killed in southern Egypt, most of them when blazing fuel flooded into a village from a depot struck by lightning in a rainstorm. Lightning struck the depot's eight fuel tanks toward the end of the storm that raged across much of Egypt for up to five hours.
Source
...Lightning strikes Catatumbo River in northern Venezuela 280 times per hour, 260 nights per year!
A lightning storm rages almost constantly at the mouth of the Catatumbo River in northern Venezuela, with bolts striking up to 280 times per hour for 10 hours a day, on 260 nights every year. That's 28 lightning strikes per minute for those nights - and about 1.2 million lightning strikes each year.
Venezuela, home of the delicious pabellón criollo, has been experiencing the Catatumbo lightning for hundreds of years now. It comes from storm clouds that amass more than 3,200 feet above the spot where the Catatumbo River flows into Lake Maracaibo. According to meteorologists, winds going across the lake and its surrounding swamps are likely responsible for the storms. The swamps are plains surrounded by mountains - the Andes (home of the first cultivation of quinoa), the Perijá Mountains, and the Cordillera de Mérida - and the combination of heat and moisture in the area creates electrical charges that - when met with wind destabilized by the mountain ridges - turns into lightning and thunderstorms.
Light flashes from the storm can be seen up to 25 miles away, earning the phenomenon the nickname "The Maracaibo Beacon," and it's been used by ships for navigation as a result.
The frequency of the lightning strikes changes both within the year and from one year to the next. October's wet season is peak time for the storms, while they generally calm down in January and February. In fact, there was a break in the storm due to a drought between January and March of 2010, and locals feared that the phenomenon was over for good.
The Catatumbo lightning holds a special place in the heart of Venezuelans, because it may have been partially responsible for the nation's independence. An attempted surprise attack led by British navigator Sir Francis Drake on the Spanish army was spoiled by the bright lightning one night in 1595, a story that was later recounted in Lope de Vega's epic La Dragontea a few years later. Years later, in the early nineteenth century, the Spanish army itself attempted a sneak attack on Maracaibo in order to take back the country towards the end of the Venezuelan War of Independence. Again, the Catatumbo lightning lit up the landscape, thwarting the invasion and allowing Venezuela's beloved revolutionary hero, Simón Bolívar, and his fleet to win one of the last and most important battles in the wars against the Spanish for independence.
The Catatumbo lightning has also been responsible for producing more ozone at the mouth of the Catatumbo than any other place in the world. Scientists have expressed doubt, however, that this will have any effect on the world's ozone layer, due to the lightning's instability. Its effect on tourism, however, is not in doubt, as sightseers have flocked to the region to join nighttime tours to see the lightning. It's a great addition to any South American itinerary.
Source
The plane carrying the Spanish national football team home from the World Cup in Brazil was struck by lightning on the 22nd of June 2014!
The plane carrying the Spanish national football team home from the World Cup in Brazil was struck by lightning on the 22nd of June 2014 as it approached its landing in Madrid, adding to the streak of bad luck the team seemed to be on after its World Cup defeat.
Source
Earthquake lightning?
What was that strange light in the sky?
Many people overnight reported seeing strange lights in the sky, a phenomenon that has been reported for centuries before, during, and after earthquakes.
Seismologists aren't in agreement about the causes of the hotly-debated phenomenon - called earthquake lights or, sometimes, earthquake lightning.
And, of course, it's not clear whether the lights overnight in New Zealand were the phenomenon, or something else.
One theory suggests dormant electrical charges in rocks are triggered by the stress of the Earth's crust and plate tectonics, transferring the charge to the surface where it appears as light.
Historical reports include globes, or orbs, of glowing light, floating just above the ground or in the sky.
Much like tidal research, it is an area that is notoriously difficult to investigate. Tidal stresses and their effects on the Earth are minute, but measurable, although many seismologists remain unconvinced by theories of "tidally triggered" earthquakes.
With "earthquake light", the phenomenon is also notoriously difficult to observe, study, and measure.
GNS seismologist Caroline Holden said there were anecdotal reports of lights in the sky.
"Unfortunately, we cannot measure this phenomena or its extent with our instruments to provide a clear explanation," she said.
The phenomenon has been documented for centuries.
Hypotheses have suggested the movement of rocks could generate an electric field, others suggest quakes can lead to rocks conducting electromagnetic energy and a subsequent build up of electric charges in the upper atmosphere.
Yet another theory suggests a link between the electric charge, or current, released by the earth ripping and buckling below the surface, and the magnetic properties of rock.
The charge appears as light, so the theory goes.
People reported similar strange lights in the sky during the 2011 Christchurch earthquake.
In 1888, before a large quake around the Hanmer region, a strange glow in the sky was reported by observers.
One recent study documented hundreds of sightings of strange light, glowing, and aurora-like reports, from 1600 to the 19th century.
The study in the Seismological Research Letters suggested a charge builds up in rock inside the Earth's crust and, as it becomes rapidly unstable in a quake, expands outward.
In an earthquake, the electrical charge transfers from below the surface to the surface, or above, depending on the conductivity of the rock - appearing as light.
"When such an intense charge state reaches the Earth's surface and crosses the ground–air interface, it is expected to cause [an electric transmission and breakdown] of the air and, hence, an outburst of light.
"This process is suspected to be responsible for flashes of light coming out of the ground and expanding to considerable heights at the time when seismic waves from a large earthquake pass by."
The study said some seismologists also think the theory could account for other phenomena, such as changes to electrical fields, strange fog, haze, clouds, and low-frequency humming or radio frequency emission.
In the study, the researchers found the light was more often associated with a type of quake in which tectonic plates are wrenched apart, known as a "rift" earthquake
Source
Why is lightning white?
Static charges form in a storm composed of ice crystals and liquid water drops. Turbulent winds inside the storm cause particles to rub against one another, causing electrons to be stripped off, making the particles either negatively or positively charged.
The charges get grouped in the cloud, often negatively charged near the bottom of the cloud and positively charged up high. This is an electric field and because air is a good insulator, the electric field becomes incredibly strong. Eventually a lightning bolt happens and the flow of electrons neutralizes the electric field.
This flow of electrons through the lightning bolt creates a very hot plasma, as hot as 50,000 degrees, that emits a spectrum of electromagnetic energy. Some of this radiation is in the form of radio waves and gamma rays.
Instruments that measure these electromagnetic waves allow us to detect lightning bolts that are very far away. Visible light is also part of the spectrum of energy.
At these temperatures, laws of physics state that most of the visible light will be at a wavelength perceived as the color blue, although all wavelengths will be emitted.
The notion of color applies to our perception of what we see, not to the light itself. When we talk about the color of light, we really mean the color we sense with our eyes and then interpret with our mind.
Thus, while the peak energy is at blue wavelengths, the intensity of all the colors tends to saturate our eyes, leading us to perceive the color white – which includes all wavelengths in the visible spectrum.
Over the last 20 years scientists have discovered that lightning also shoots upward out of the top of thunderstorms into the upper atmosphere. These lightning types have distinctive colors, including red sprites and blue jets.
Source
Animals can have storm phobia!
According to WbMD, storm phobia is very real and should be taken seriously. Loyal masters are often awaken in the middle of the night – not from the thunder – but from the uninvited pet jumping in the bed looking for comfort from the storm.
Cases of storm phobia in pets can be much more severe and should not be ignored. They say some pets have been known to “claw through drywall, chew carpets, or break through windows in their escalating panic.”
Source
Lightning protection tents exist!
The probability of getting struck by lightning is statistically very rare, but alas, storm-attributed deaths and injuries stretch into the low thousands on an annual basis. About 96% of those struck were in open environments when hit. A majority — as you may expect — come from frequent participators in outdoor activities such as hiking, camping, and climbing. Industrial designer kama jania’s ‘bolt’ line of tents was created to increase the safety of those unfortunate to be in the wrong place when the weather turns.
Source
Volcano eruptions can produce lightning!
Mount Etna spectacularly exploded on the 3rd of December 2015 for the first time in two years, sending a plume of volcanic ash scorching through the sky. The cloud was lit up with the astonishing sight of a "dirty thunderstorm", which causes lightning to streak through a cloud of ash. This natural wonder occurs when tiny fragments of rock, ash and ice rub together to produce static electricity.
Source
On the 21st of August 2011, a thunderstorm forced the Pope to cut short his speech!
On the 21st of August 2011, a thunderstorm forced the pope to cut short his speech to an estimated 1 million young pilgrims gathered at a Madrid airfield to mark World Youth Day. As rain soaked the crowd and lightning lit up the night sky on Saturday, the 84-year-old pontiff skipped the bulk of the speech and delivered brief greetings in half a dozen languages.
Source