News archive

Daedalus Storm caused many damages in Greece (31/10/2017)

Many parts of Greece have been hit last week by a powerful low barometric phenomenon called Daedalus bringing hailstorms, heavy rain and low temperatures. The areas that have been hit the hardest are in central Greece, and in particular in the Fthiotis Region, as well as parts of the Peloponnese. The weather system is expected to hit Athens on Wednesday, when storms as well as a substantial drop in temperature, are expected. The worst problems occurred in the area around the towns of Livanates and Arkitsa, on Tuesday evening when a heavy hailstorm caused disruption on the main highway linking Athens and Thessaloniki in northern Greece! In Peloponnese the town of Katakolo was dressed in white following a hailstorm. The hail reached the seaside. In the town of Marathon; north-east of Athens, the heavy rainfall created chaos on the streets that eventually turned into small rivers.
Source

Over 176,000 lightning strikes witnessed in Australia (30/10/2017)

Over 176,000 lightning strikes were witnessed in Australia's Queensland state due to severe storms, the media reported on Monday. According to the state bureau of Meteorology, the lightning bolts ripped across the night skies on Sunday with more expected on Monday, reports the BBC. The turbulent weather had photographers and storm chasers glued to the skies, with many capturing stunning shots of the lightning strikes. "The sky was electric for hours, certainly more than usual storms," a Brisbane-based photographer told the BBC. "It would erupt in bursts, lighting up the entire sky, then calming momentarily before continuing the electric display." Local energy provider Energexx said more than 4,000 homes were left without power as a result of the storms. The bureau has also has warned of more "severe thunderstorms", "damaging winds and large hailstones".
Source

Heavy electrical activity continues over eastern Mediterranean (26/10/2017)

Thunderstorms dominated the eastern Mediterranean on Wednesday 25/10/2017. The ZEUS lightning detection network of the National Observatory of Athens, recorded over 16000 strokes in the area.
Source

Electric activity over central and eastern Mediterranean continued on Tuesday 24/10/2017

Thunderstorms and electric activity over central and eastern Mediterranean continued on Tuesday 24/10/2017. According to the ZEUS VLF lightning detection network of NOA, more than 6500 strokes were recorded over the area.
Source

7000 lightning strokes over central and eastern Mediterranean on Monday 23/10/2017

A lot of thunderstorms and electric activity yesterday 13/10/2017, over central and eastern Mediterranean. The ZEUS lightning detection network recorded more than 7000 strokes during the day. Hail was reported over western Greece cities and a (not yet confirmed) tornado appearance over southern Greece (Ierapetra-Crete).
Source

At least 4 killed after plane crashes off Ivory Coast amid thunderstorm (15/10/2017)

A cargo plane crashed into the Atlantic Ocean off West Africa’s Ivory Coast shortly after taking off in a thunderstorm on Saturday morning. At least 4 people have died in the crash, but some of the crew may have survived, according to BBC News. No details have emerged on exactly how many people were onboard the plane. Crews have been able to retrieve the bodies from the wrecked plane as debris from the crash swept back towards the shore. The aircraft took off from Port-Bouet Airport in Abidjan around the midmorning hours on Saturday. Rain and thunderstorms were occurring during takeoff, according to weather observations from the airport. Wind speeds reached as high as 30 km/h (18 mph) during the storm.
Source

Greek island in state of emergency after storm flooding (27/9/2017)

ATHENS, Greece – Greek authorities have declared the northern Aegean Sea island of Samothrace in a state of emergency after storms severely damaged roads, buildings and the drinking water supply. No deaths or injuries have been reported. A government statement said Wednesday that military and civilian teams from other parts of the country have been sent to Samothrace to help repair the flood damage. It said efforts are focusing on repairing the island's road network and water supply. Samothrace's health center and municipal buildings also suffered heavy damage from the storms late Monday and early Tuesday.
Source

15 injured, 2 critically in lightning strike at French festival (3/9/2017)

A lightning strike at a music festival in France has left at least 15 people injured - with two of them said to be in a serious condition. This was reported by the local authorities. Lightning struck in several places at the festival, leaving 15 people in need of treatment including children. According to the statement, on the scene arrived two teams of doctors, 60 firefighters and three patrol of the gendarmerie. Those seriously injured were a woman in her sixties and a 44-year-old man, the BBC reported. Lightning struck a big tent located near a large tree under which festival goers had taken refuge. Those who were injured received emergency first aid on site, before being transferred to hospital. It adds that the chances of being killed by lightning are 300,000 to one. In countries such as the United Kingdom, an average of three people are killed by lighting every year.
Source

Lightning strikes Catatumbo River in northern Venezuela 280 times per hour, 260 nights per year (26/8/2017)

A lightning storm rages almost constantly at the mouth of the Catatumbo River in northern Venezuela, with bolts striking up to 280 times per hour for 10 hours a day, on 260 nights every year. That's 28 lightning strikes per minute for those nights - and about 1.2 million lightning strikes each year. Venezuela, home of the delicious pabellón criollo, has been experiencing the Catatumbo lightning for hundreds of years now. It comes from storm clouds that amass more than 3,200 feet above the spot where the Catatumbo River flows into Lake Maracaibo. According to meteorologists, winds going across the lake and its surrounding swamps are likely responsible for the storms. The swamps are plains surrounded by mountains - the Andes (home of the first cultivation of quinoa), the Perijá Mountains, and the Cordillera de Mérida - and the combination of heat and moisture in the area creates electrical charges that - when met with wind destabilized by the mountain ridges - turns into lightning and thunderstorms. Light flashes from the storm can be seen up to 25 miles away, earning the phenomenon the nickname "The Maracaibo Beacon," and it's been used by ships for navigation as a result. The frequency of the lightning strikes changes both within the year and from one year to the next. October's wet season is peak time for the storms, while they generally calm down in January and February. In fact, there was a break in the storm due to a drought between January and March of 2010, and locals feared that the phenomenon was over for good. The Catatumbo lightning holds a special place in the heart of Venezuelans, because it may have been partially responsible for the nation's independence. An attempted surprise attack led by British navigator Sir Francis Drake on the Spanish army was spoiled by the bright lightning one night in 1595, a story that was later recounted in Lope de Vega's epic La Dragontea a few years later. Years later, in the early nineteenth century, the Spanish army itself attempted a sneak attack on Maracaibo in order to take back the country towards the end of the Venezuelan War of Independence. Again, the Catatumbo lightning lit up the landscape, thwarting the invasion and allowing Venezuela's beloved revolutionary hero, Simón Bolívar, and his fleet to win one of the last and most important battles in the wars against the Spanish for independence. The Catatumbo lightning has also been responsible for producing more ozone at the mouth of the Catatumbo than any other place in the world. Scientists have expressed doubt, however, that this will have any effect on the world's ozone layer, due to the lightning's instability. Its effect on tourism, however, is not in doubt, as sightseers have flocked to the region to join nighttime tours to see the lightning. It's a great addition to any South American itinerary.
Source

Lightning strike Northern Ireland families' lucky escape (24/8/2017)

A Co Down family were left terrified after their home was hit by a "massive explosion" during lightning storms on Tuesday night. Brenda Higgins had put her young son to bed when her house in Katesbridge was struck by lightning. The lightning bolt caused a hole in the roof space of the property. The mother said she had just put the five-year-old to bed when their house was suddenly shook by what she described as a "massive explosion". Her eldest son also had a lucky escape when the lightning bolt hit his bedroom minutes after he had left it. "I was in bed about five or 10 minutes and heard this massive bang," she told the BBC. "From the room, I could see the orange glow of a fire from the other bedroom - thankfully the rain put it out. "My son was very lucky as he had been in the bedroom about half-an-hour beforehand. "He had gone downstairs to watch TV when the lightning struck. "My husband jumped out of bed and my two youngest boys, aged five and 13, were distraught. "I got the younger children out of the house when I realised part of the roof was off." The lightening strike also caused plugs to blow off the wall. "We've called the insurance company to assess the damage, but we'll not be in the house tonight," she said. Brenda, a classroom assistant, and her family are staying with relatives until investigations into the extent of the damage are completed. She added: "There is debris everywhere and we have no electricity. I don't know how long we will be out of the house, but the main thing is that we are all OK and no one was hurt." Meanwhile, another Co Down family also described their terror after believing a "bomb had gone off" when their house was struck by lightning. Gareth McGreevy was watching television with his parents in their home on Drumnaconagher Road, between Crossgar and Ballynahinch, when they heard a loud bang that forced them to evacuate. "We were watching television waiting on the Rose of Tralee result and there was suddenly a massive explosion," he explained. "A phone flew off the wall - it was like a bomb had gone off. "There was an eerie silence and you could smell the burning." Mr McGreevy described the unlucky strike, which severely damaged the roof of the house and caused lights to fall off the ceiling, as "terrifying". "We didn't realise that the roof had been struck until about 15 minutes later when we had a walk around and saw all the debris," he explained. The roof of the property now has three holes in it after the tiles were blown to "smithereens". His sister's car also suffered a few bumps after debris fell on top of it. The family were left in the dark after the lightning knocked out the power. He added: "It was terrifying. It was a surreal experience, and something I'd hate for anyone to go through."
Source

Over 24000 strokes were recorded yesterday (Friday, 28 June 2017) by ZEUS

Over 24 CG lightning strokes were recorded by the ZEUS VLF detection network on Friday 28 of June 2017 over central and Eastern Europe. The areas that were mostly affected was northern Germany, Poland, Ukraine and Moldova.
Source

Over 7000 CG strokes were recorded over Europe on Thursday 29/6/2017

A lot of electrical activity, mainly over East Europe, on Thursday 29/6/2017. The ZEUS VLF lightning detection system, recorded around 7300 CG strokes. The main activity period was from 09:00 to 15:00 UTC.
Source

Lightning sparking more boreal forest fires (27/6/2017)

A new NASA-funded study finds that lightning storms were the main driver of recent massive fire years in Alaska and northern Canada, and that these storms are likely to move farther north with climate warming, potentially altering northern landscapes. The study, led by Vrije Universiteit Amsterdam and the University of California, Irvine, examined the cause of the fires, which have been increasing in number in recent years. There was a record number of lightning-ignited fires in the Canadian Northwest Territories in 2014 and in Alaska in 2015. The team found increases of between two and five percent a year in the number of lightning-ignited fires since 1975. To study the fires, the team analyzed data from NASA's Terra and Aqua satellites and from ground-based lightning networks. Lead author Sander Veraverbeke of Vrije Universiteit Amsterdam, who conducted the work while at UC Irvine, said that while the drivers of large fire years in the high north are still poorly understood, the observed trends are consistent with climate change. "We found that it is not just a matter of more burning with higher temperatures. The reality is more complex: higher temperatures also spur more thunderstorms. Lightning from these thunderstorms is what has been igniting many more fires in these recent extreme events," Veraverbeke said. Study co-author Brendan Rogers at Woods Hole Research Center in Falmouth, Massachusetts, said these trends are likely to continue. "We expect an increasing number of thunderstorms, and hence fires, across the high latitudes in the coming decades as a result of climate change." This is confirmed in the study by different climate model outputs. Study co-author Charles Miller of NASA's Jet Propulsion Laboratory in Pasadena, California, said while data from the lightning networks were critical to this study, it is challenging to use these data for trend detection because of continuing network upgrades. "A spaceborne sensor that provides high northern latitude lightning data that can be linked with fire dynamics would be a major step forward," he said. The researchers found that the fires are creeping farther north, near the transition from boreal forests to Arctic tundra. "In these high-latitude ecosystems, permafrost soils store large amounts of carbon that become vulnerable after fires pass through," said co-author James Randerson of the University of California, Irvine. "Exposed mineral soils after tundra fires also provide favorable seedbeds for trees migrating north under a warmer climate." "Taken together, we discovered a complex feedback loop between climate, lightning, fires, carbon and forests that may quickly alter northern landscapes," Veraverbeke concluded. "A better understanding of these relationships is critical to better predict future influences from climate on fires, and from fires on climate."
Source

Train services still affected as storm death toll rises to two in northern Germany (24/06/2017)

At least two people were killed on Thursday when a ferocious storm swept through northern Germany. On Friday morning Deutsche Bahn was still struggling to bring train services back on track. The high-speed ICE rail line between Berlin and Düsseldorf was completely cancelled on the section between Bielefeld and Gütersloh on Friday morning. The long-distance service had instead been redirected through Osnabrück. High-speed services between Hanover and Hamburg was also still not running, having been cancelled on Thursday afternoon. Services are expected to resume on Friday afternoon, but on a redirected route - meaning frustrating delays for people travelling home for the weekend. There was some good news though, as regular services between Hamburg and Bremen had resumed on Friday. On Thursday and early Friday morning gale-force winds, torrential rains and hail damaged rail tracks and power lines, forcing trains to be halted between Berlin, Hamburg, Bremen, Kiel and Hanover. Video footage was recorded of lightning striking Berlin's Fernsehturm, the tallest building in Germany. A 50-year-old man died while his wife was injured when their parked car was hit by a falling tree near the city of Uelzen. A falling tree also seriously injured a female cyclist nearby. An 83-year-old woman meanwhile died in Gifhorn in the neighbouring state of Lower Saxony after her car hit a tree which had been blown across the street in strong gales, police said. In the port city of Hamburg, the weather service reported a rare tornado some 10 kilometres from the airport. In the south of the city, storms damaged house roofs and killed sheep that were hit by toppled trees. Music fans had to seek shelter in their cars at the venue of a weekend musical festival near Bremen that, ironically, is named "Hurricane".
Source

Lightning claims topped $800 million last year in the US (20/06/2017)

Every year the Insurance Information Institute (I.I.I.) and State Farm recognize Lightning Safety Awareness Week (June 18-24) by estimating the toll of lightning claims in the United States, writes the I.I.I. research team. Last year insurers paid out nearly $862 million in lighting claims to more than 100,000 policyholders, a 4.5% increase from 2015. Damage caused by lightning, such as a fire, is covered by most homeowners insurance policies. Florida—the state with the most thunderstorms—remained the top state for lighting claims in 2016, with 10,385, followed by Texas (9,098), Georgia (8,037) and Louisiana (5,956). Homeowners Insurance Claims and Payouts for Lightning Losses, 2007 – 2016 The Lightning Protection Institute (LPI) encourages homeowners to install a lightning protection system in their homes. Per Kimberly Loehr, communications director for LPI: “Lightning protection systems that follow the guidelines of NFPA are designed to protect your home by providing a specified path to harness and safely ground the super-charged current of the lightning bolt.” To learn more about an LPI-certified lighting protection system, click here or visit lightning.org/find-an-installer.
Source

Significant activity over Greece during Sunday, 12 June 2017

A lot of thunderstorms battered Greece, yesterday (Sunday, 12 June 2017). Rain and hail left behind over 50 mm of precipitation in various areas, like Kozani (64 mm), Antikyra (55 mm), and Paramythia (51 mm). At the same time, the ZEUS VLF lightning detection system, recorded over 2000 CG lightning strikes, mainly over the Greek mainland.
Source

Lightning strikes kill 57, 19 killed by strong winds in Myanmar (8/6/2017)

From April to end of May last year 10 people died from lightning strikes, but this year the figure has risen to 57 between April and June 6, with another 18 people injured, according to the Department of Relief and Resettlement. Apart from Chin State, there were casualties in other states and regions. Deaths from lightning strikes were highest in Ayeyarwady Region with 14, while Bago Region had eight deaths, Tanintharyi Region had seven, Magwe Region had six and Yangon Region had five. There were also fatalities and injuries from strong winds. According to the department’s figures for March to May 26, 19 people were killed and 30 people injured by strong winds, which also destroyed more than 13,000 houses and about 160 religious buildings. “In the past few years, cumulonimbus clouds have been forming in a wider area, even in Ayeyarwady, Bago and Yangon. This year, there has been more lightning and hailstorms from these clouds and we have had more reports of people being hit by lightning,” U Kyaw Moe Oo, deputy director general of the Department of Meteorology and Hydrology, said Wednesday. Cumulonimbus clouds form in the evening due to high temperatures during the day and can result in thunderstorms, hailstorms and isolated showers, he said. “Due to high temperatures during the day, most regions and states have experienced lightning and strong winds this year. It is better to switch off electrical appliances such as televisions and mobile phones when you feel it is going to rain and you hear thunder,” he said. The monsoon has been strong in southern Myanmar, he said, and it may rain in Mon and Kayin states, Tanintharyi Region, the delta and central Myanmar. “Thunderbolts usually happen during the pre-monsoon period – April and May – as well late in the season,” he said. The department’s weather forecast for Wednesday predicted likely moderate though rough seas in the delta, Gulf of Mottama and along the Mon-Tanintharyi coasts. Wave height was expected to be 6 to 10 feet in the delta, the Gulf of Mottama and Mon-Tanintharyi coasts, and about 4 to 6 feet on the Rakhine coast. “Cumulonimbus clouds may form in the delta and central Myanmar. Thunderstorms, strong winds and lightning will continue,” U Kyaw Moe Oo said.
Source

Widespread lightning over Europe during the 31st of May 2017

A lot of electric activity was recorded over the central and southern Europe during 31/05/2017. According to the ZEUS Very Low Frequency lightning detection system, operated by the National Observatory of Athens, 4000 cloud-to-ground discharges battered these areas, manly from 12:00 to 20:00 UTC.
Source

Glass spheres forged by volcanic lightning offer clues about eruptions (19/5/2017)

Studying volcanic eruptions in person can be dangerous, and scientists have died trying. Volcanic lightning — yes, volcanoes make lightning! — by contrast offers a safer opportunity to examine what happens inside a volcano. But these bright bolts still occur in vicious environments, plus the thick, dense plumes of ash can obscure lightning strikes. Now, scientists have developed a way to analyze volcanic lightning that is cost effective, relatively simple and safe. Rather than get near volcanic lightning or use expensive equipment, researchers at the Ludwig Maximilian University of Munich in Germany gain clues through a byproduct of the lightning: glass. Volcanic lightning occurs during an eruption, when hot ash particles rise into the air and rub against each other. The heat and friction create a differential in electric charge that sparks a strike. The lightning zaps in and out of the thick plumes of rising ash, making the ash so hot it sometimes turns into liquid. If the ash particles are heated sufficiently and given enough time to cool, they can morph into tiny glass spheres — no bigger than a dot from a pen tip. The glass particles then fall back to the ground and gather in large deposits. “If the lightning event is too short, then the particle won’t melt in the first place,” said Fabian Wadsworth, a University of Munich volcanologist who led the study published in the Journal of Geophysical Research: Solid Earth. But if the heat diffuses into the particle and melts it, then two things happen. With enough time, the melting ash will round into a complete sphere thanks to surface tension. Or if the particle cools at a faster rate than the rounding, the final glass will remain jagged and angular. Fabian Wadsworth and his team used computer simulations to develop a mathematical model that can predict what eruption conditions were necessary to create the various glass spheres. The researchers’ model allows them to work backward. By noting a glass particle’s shape, they can determine, the specific lightning conditions of any given eruption. Volcanic lightning strikes vary in temperature and duration. So as a result, the glass particles differ as well. “The number of lightning events — and how long they last — seems to be somehow related to the distribution of sizes of particles in the plume,” Wadsworth said. “In turn, the distribution sizes of particles in the plume is related directly to how explosive the eruption was that produced them.” So simulating the conditions under which these glass particles form provides a better understanding of how the volcano erupted. Volcanic lightning gains steam “For a long time it was anecdotal, so it’s been interesting to watch that transition develop,” said Stephen McNutt, a volcanologist at the University of South Florida who was not involved in the study. “Now you go to see talks at scientific meetings about volcanoes, and they’re starting to more routinely report lightning.” In the past, scientists relied on instruments called Lightning Mapping Arrays (LMAs) that detect radio frequencies to resolve the electrical signals from lightning strikes. LMAs, combined with other instruments, allow scientists to create a 3D map of volcanic lightning with an accuracy of within 10 meters, McNutt said. But this technique is expensive and still doesn’t provide all the answers, such as the lightning temperatures. Wadsworth and his team demonstrated that, using mathematical tools, researchers can back track from big scale natural observations — lightning — to decipher detailed parts of the complicated eruption process. The seemingly small, inconsequential aftermath from the eruptions — glass particles — are akin to a new diagnostic test in a doctor’s office that can clear up portions of the bigger picture. Plus, this work feeds directly into hazard mitigation for volcanic eruptions. When volcanic ash mixes with rainfall, it creates sludge that can collapse roofs. The traveling ash cloud can cause respiratory problems, damage machinery and stymie renewable energy generation by blocking solar panels. Wadsworth and his team have begun to test if and how well ash particles melted by lightning stick to jet engine surfaces. Knowing this information could guide planes around erupting volcanoes. The ability to quickly analyze plume conditions, for less cost, will help scientists to foresee potential dangers in the aftermath of an eruption. “Getting information quickly about the plume conditions helps us predict where plumes will go in certain wind conditions, which obviously helps us prepare for ash arriving in certain parts of the world,” Wadsworth said.
Source

Researchers quantify the changes that lightning inspires in rock (27/4/2017)

Benjamin Franklin, founder of the University of Pennsylvania, is believed to have experimented with lightning's powerful properties using a kite and key, likely coming close to electrocuting himself in the process. In a new set of experiments at Penn, researchers have probed the power of lightning in a less risky but much more technologically advanced fashion. Chiara Elmi, a postdoctoral researcher in Penn's Department of Earth and Environmental Science in the School of Arts & Sciences, led the work, which used a suite of techniques to examine a fulgurite, a thin layer of glass that forms on the surface of rock when lightning hits it. Among other findings, the study discovered that, based on the crystalline material in the sample, the minimum temperature at which the fulgurite formed was roughly 1,700 degrees Celsius. "People have been using morphological and chemical approaches to study rock fulgurites, but this was the first time a rock fulgurite was classified from a mineralogical point of view," Elmi said. "I was able to adapt an approach that I've used before to study the effects of meteorite impact in rocks and sediments to analyze a tiny amount of material in order to understand the phase transitions that occur when a lightning hits a rock." Elmi collaborated on the work with senior author Reto Gieré, professor and chair of the Department of Earth and Environmental Science, along with the department's Jiangzhi Chen, a postdoctoral researcher, and David Goldsby, an associate professor. Their paper will be published in the journal American Mineralogist. In a study published last year, Gieré characterized a rock fulgurite found in southern France, finding that the lightning bolt that hit it transformed the layer of rock beneath the fulgurite on the atomic level, producing tell-tale structures called shock lamellae. The team wanted to pursue a different line of study in the new work. "In this case," Gieré said, "we instead wanted to study the glass layer in more detail to find out what the minerals present could tell us about the temperature of lightning." To do so, Elmi performed an X-ray diffraction analysis, which collects information about the way that X-rays interact with crystalline materials to infer the mineral content of a given sample. The challenge in this instance, however, was that a typical X-ray diffraction analysis requires roughly a gram of material, and the quantity of the 10-micrometer thick fulgurite was not nearly that substantial. To adapt the technique for a smaller quantity of sample, Elmi put the material in a narrow, rotating capillary tube and adjusted the diffraction optics to align, concentrate and direct the X-ray beam toward the sample. The analysis of the fulgurite revealed the presence of glass as well as cristobalite, a mineral with the same chemical composition of quartz but possessing a distinct crystal structure. Cristobalite only forms at very high temperature, and the glass indicated that the top layer of granite melted during the lightning strike. Elmi's analysis enabled her to quantify the glass and the residual minerals in a rock fulgurite for the first time. "These two signatures indicate a system that received a shock of high temperature," Elmi said. "This analysis also indicates the minimal temperature you have to create the glass because cristobalite forms around 1,700 Celsius, so you know that this temperature was achieved when the lightning hit the rock." The measured temperature of lightning in the air is in fact much higher—measured at around 30,000 degrees Celsius—but this analysis indicates that the rock itself was raised from ambient temperatures to at least 1,700 Celsius. The team performed additional analyses on the fulgurite sample. They found organic material in the sample, indicating that the lightning burned lichen or moss growing on the surface of the rock and then trapped it inside the material. "This is an extremely fast event," Gieré said. "The rock heats up very quickly and also cools down very quickly. That traps gases in the glass and some of these gases were formed by the combustion of organic material." In future studies, the team hopes to develop a complete model of what happens to rocks during a lightning strike, incorporating chemical, physical, biological and mineralogical observations. They note that people like Franklin who experience near-misses with lightning are lucky indeed. "It's amazing that a bolt of lightning can turn granite molten and completely change its structure, yet some people survive lightning strikes," said Gieré.
Source